 = 2x^2-1\text{ is monotonic increasing.})

Pictures
(https://i.imgur.com/WT3BeIx.jpg)
(https://i.imgur.com/6ELyHTs.jpg)
 were}\\ \begin{align*}L_5 &= \frac{1}{5} \big( f(1) + f(2) + f(3) + f(4) + f(5) \big) \\ &= \frac15 \left( f\left(1 \right) + f \left( 1 + \frac{5}{5}\right) + f \left(1 + \frac{10}{5} \right) + f \left(1 + \frac{15}{5} \right) + f \left( 1 + \frac{20}{5} \right)\right)\\ &= \frac15 \sum_{k=0}^4 f\left(1 + \frac{5k}{5}\right)\\ U_5 &= \frac{1}{5} \big( f(2) + f(3) + f(4) + f(5) + f(6) \big) \\ &= \frac15 \left(f \left( 1 + \frac{5}{5}\right) + f \left(1 + \frac{10}{5} \right) + f \left(1 + \frac{15}{5} \right) + f \left( 1 + \frac{20}{5} \right) + f \left(1 + \frac{25}{5} \right)\right)\\ &= \frac15 \sum_{k=1}^5 f\left(1 + \frac{5k}{5}\right) \end{align*})
Of course, this isn't the only representation that gets to the answer.
 \\ U_n &=\frac1n \sum_{k=1}^n f \left(1 + \frac{5k}{n} \right) \end{align*})
---------------------------------------------------------------------------------------------------

 - \frac1n\sum_{k=0}^{n-1} f \left(1 + \frac{5k}{n} \right) < 0.001\\\text{which is just a telescoping sum, and simplifies to}\\ \boxed{\frac1n\left( f(6) - f(0) \right) < 0.001})
 - f(0) = 70\\ \text{so }\frac1n < \frac{0.001}{70} \implies \boxed{n >70000 })
Subject to minor computational error