ATAR Notes: Forum
VCE Stuff => VCE Mathematics => VCE Mathematics/Science/Technology => VCE Subjects + Help => VCE Mathematical Methods CAS => Topic started by: Inside Out on October 12, 2010, 11:44:22 pm
-
If y=(x+(x2+1)1/2)2, show dy/dx=2y/(x2+1)1/2
-
dy/dx? ;)
Again directly apply the chain rule:
^{-\frac{1}{2}} (2x + 1) )
Then substitute
into there and simplify.
EDIT:...wait wat?
-
question is wrong as

assuming dy/dx
dy/dx = (2x+1)/(2y)
dx/dy = 2y/(2x+1)
-
QUesiton has been modified :D
-
In that case, emulate the same process:
^{\frac{1}{2}}\right) \frac{d}{dx}\left(x + (x^2 + 1)^{\frac{1}{2}}\right) )
Finding ^{\frac{1}{2}}\right) = 1 + \frac{1}{2}(x^2 + 1)^{-\frac{1}{2}}2x)
Substituting in:
^{\frac{1}{2}}\right) \left(1 + \frac{1}{2}(x^2 + 1)^{-\frac{1}{2}}2x\right))
^{\frac{1}{2}}\right) \left(1 + \frac{x}{(x^2 + 1)^{\frac{1}{2}}}\right) )
 )


Since ^2 = x^2 + 2x\sqrt{x^2 + 1} + x^2 + 1 = 2x^2 + 2x\sqrt{x^2+1} + 1 )
Then the expression becomes:

-
^{2})
let 


)

}(\sqrt{x^{2}+1})+2x(x+\sqrt{x^{2}+1})}{\sqrt{x^{2}+1}})
+2x^{2}+2x\sqrt{x^{2}+1}}{\sqrt{x^{2}+1}})
+x^{2})}{\sqrt{x^{2}+1}})
^{2}}{\sqrt{x^2}+1})
as required
EDIT: DAMMIT BEATEN :(
-
ahhhhhhhhhhh i get it thanks vn people! :D