ATAR Notes: Forum
VCE Stuff => VCE Mathematics => VCE Mathematics/Science/Technology => VCE Subjects + Help => VCE Specialist Mathematics => Topic started by: Matt The Rat on April 20, 2008, 05:52:11 pm
-
I was wondering if someone would be able to help out with this question. Thanks in advance! :)
-
Use compound angle formula, rearrange & simplify!
-
(looks like dinner got delayed)
*typing*
 = \lambda \cos(\theta-\alpha))
using compound angle formula:
 \cdot \cos (\alpha) + \sin (\alpha) \cdot \cos (\theta) = \lambda \cdot (\cos (\theta) \cdot \cos (\alpha) + \sin (\theta) \cdot \sin (\alpha)))
 \cdot \cos (\alpha) - \lambda \cdot \sin (\theta) \cdot \sin (\alpha) = \lambda \cdot \cos (\theta) \cdot \cos (\alpha )- \sin (\alpha) \cdot \cos (\theta))
 \cdot (\cos (\alpha) - \lambda \cdot \sin (\alpha)) = \cos (\theta) \cdot (\lambda \cdot \cos (\alpha) - \sin (\alpha)))
}{\cos (\theta)} = \frac{\lambda \cdot \cos (\alpha) - \sin (\alpha)}{\cos (\alpha) - \lambda \cdot \sin (\alpha)})
 = \frac{\lambda \cdot \cos (\alpha) - \sin (\alpha)}{\cos (\alpha) - \lambda \cdot \sin (\alpha)} \cdot \frac{\sec (\alpha)}{\sec (\alpha)})
 = \frac{\lambda - \tan (\alpha)}{1-\lambda \cdot \tan (\alpha)})
I tried a graphical approach first and got absolutely nowhere, i suppose there's times when you just ought to trust algebra.
-
Just one question...where did you get this question from? I haven't seen it before!
-
Thanks Mao and ice_blockie!