ATAR Notes: Forum
VCE Stuff => VCE Mathematics => VCE Mathematics/Science/Technology => VCE Subjects + Help => VCE Mathematical Methods CAS => Topic started by: geoff_821 on November 07, 2011, 09:46:27 pm
-
What are the requirements for f(g(x)) to exist?
-
range of g(x) must be equal to or part of the doman of f(x)
-
which you write like ran g(x) <= (imagine a stretched c with an equals to) dom f(x)
where g(x) is the part inside the composite fn.
-
what is the domain/range of f(g(x))
-
Domain of f(g(x)) = dom g(x)
Range depends.. I think you have to work that one out using the domain...
-
For f(g(x))
The range of g(x) must be restricted to the domain of f(x).
However, the overall domain of f(g(x)) is this restricted domain of g(x).
(Also, remember (f+g)(x)=f(x) + g(x) where the domain of (f+g) is dom f n dom g)
and (fg)(x)=f(x)g(x) where the domain of (fg) is dom f n dom g)
-
range of f(g(x)) is the range of f over a domain of ran g.
-
It's amazing that you asked this question since it just came up on the Methods exam...lucky.