Login

Welcome, Guest. Please login or register.

November 01, 2025, 03:46:12 pm

Author Topic: Tricky questions  (Read 6470 times)  Share 

0 Members and 2 Guests are viewing this topic.

funkyducky

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1273
  • Respect: +64
  • School Grad Year: 2011
Tricky questions
« on: November 05, 2011, 09:51:28 pm »
+1
is defined by . Find . Sketch on an Argand diagram.

is defined by
Find and such that is a subset of

and:

and has only one solution.
Find the possible values of 

Have fun :)


Here's another:

If the position vectors of A, B and C are , and respectively, determine whether the lines and intersect each other.
« Last Edit: November 06, 2011, 03:46:51 pm by funkyducky »
I won the GAT: 49/50/50.
Tutoring! Maths Methods (50), Specialist Maths (43), Chemistry (45)

jane1234

  • Guest
Re: Tricky question
« Reply #1 on: November 05, 2011, 10:19:30 pm »
0
is defined by . Find . Sketch on an Argand diagram.

Is the answer (x+1)^2 + y^2 = 25 for y E [-5,0)??

EDIT: On second thoughts, I don't think that's it...

EDIT2: Seems to be (x+1)^2 + y^2 = 25 for y E (0,5] instead... I'm probably completely wrong though :P
« Last Edit: November 05, 2011, 10:39:57 pm by jane1234 »

dc302

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1031
  • Respect: +53
  • School: Melbourne High School
  • School Grad Year: 2009
Re: Tricky question
« Reply #2 on: November 05, 2011, 10:32:54 pm »
0
is defined by . Find . Sketch on an Argand diagram.

Is the answer (x+1)^2 + y^2 = 25 for y E [-5,0)??

EDIT: On second thoughts, I don't think that's it...

Could be wrong but it might be (x-1)^2 + y^2 = 25?
2012-2015 - Doctor of Medicine (MD) @ UniMelb
2010-2011 - Bachelor of Science (BSc) majoring in Pure Mathematics @ UniMelb
2009 - VCE [99.70] -- Eng [43] - Methods [44] - Chem [44] - JapSL [45] - Spesh [45] - MUEP Jap [5.5]

syn14

  • Victorian
  • Adventurer
  • *
  • Posts: 6
  • Respect: +8
Re: Tricky question
« Reply #3 on: November 05, 2011, 10:39:24 pm »
0
I also got (x+1)^2 + y^2 = 25. Where does the restriction on y come from?

Yeh nvm it's just the top half.
« Last Edit: November 05, 2011, 10:43:27 pm by syn14 »

dc302

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1031
  • Respect: +53
  • School: Melbourne High School
  • School Grad Year: 2009
Re: Tricky question
« Reply #4 on: November 05, 2011, 10:41:13 pm »
0
Oops you guys are right, it is x+1.
2012-2015 - Doctor of Medicine (MD) @ UniMelb
2010-2011 - Bachelor of Science (BSc) majoring in Pure Mathematics @ UniMelb
2009 - VCE [99.70] -- Eng [43] - Methods [44] - Chem [44] - JapSL [45] - Spesh [45] - MUEP Jap [5.5]

jane1234

  • Guest
Re: Tricky question
« Reply #5 on: November 05, 2011, 10:41:47 pm »
0
I also got (x+1)^2 + y^2 = 25. Where does the restriction on y come from?

Doesn't work for the bottom values if you substitute. tan^-1(y/x-4) - tan^-1(y/x+6) will give you pi/2, but these are not the proper arguments. I think the proper arguments only work for the top half of the circle...

Greatness

  • Victorian
  • ATAR Notes Legend
  • *******
  • Posts: 3100
  • Respect: +103
  • School Grad Year: 2011
Re: Tricky question
« Reply #6 on: November 05, 2011, 10:46:02 pm »
0
 :o anyone care to explain how to do this? hahaha i hate complex numbers...

you guys are too good!

dc302

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1031
  • Respect: +53
  • School: Melbourne High School
  • School Grad Year: 2009
Re: Tricky question
« Reply #7 on: November 05, 2011, 10:48:25 pm »
0
:o anyone care to explain how to do this? hahaha i hate complex numbers...

you guys are too good!

Arg of a complex number is simply the inverse tan (arctan) of the real part/imaginary part.

So the equation actually looks like:

arctan( x-4 / y ) - arctan( x+6 / y) = pi/2

Then take the cosine of both sides, the RHS will become 0 and you use the double angle formula for the LHS.

Also, would the hyperbola (x+1)^2 - y^2 = 25 not also work? Do you have the solutions?

edit: uhhhhh how did i get that wrong. it's y/x-4 and y/x+6  :o
« Last Edit: November 05, 2011, 10:53:38 pm by dc302 »
2012-2015 - Doctor of Medicine (MD) @ UniMelb
2010-2011 - Bachelor of Science (BSc) majoring in Pure Mathematics @ UniMelb
2009 - VCE [99.70] -- Eng [43] - Methods [44] - Chem [44] - JapSL [45] - Spesh [45] - MUEP Jap [5.5]

vea

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1099
  • Respect: +29
  • School Grad Year: 2011
Re: Tricky question
« Reply #8 on: November 05, 2011, 10:59:21 pm »
0
Can someone tell me how to simplify something of the form cos(arctanx) or sin(arctanx) ?  x__x

Much thanks!
2011: ATAR 99.50
2012: Bachelor of Biomedicine, UoM
2015: Doctor of Dental Surgery, UoM

funkyducky

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1273
  • Respect: +64
  • School Grad Year: 2011
Re: Tricky question
« Reply #9 on: November 05, 2011, 10:59:45 pm »
0
Thanks :)
I've come across similar before where I've simply tan'd both sides, but obviously that doesn't work here, and I was stuck with a mess with this one.
I won the GAT: 49/50/50.
Tutoring! Maths Methods (50), Specialist Maths (43), Chemistry (45)

dc302

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1031
  • Respect: +53
  • School: Melbourne High School
  • School Grad Year: 2009
Re: Tricky question
« Reply #10 on: November 05, 2011, 11:01:48 pm »
+1
Can someone tell me how to simplify something of the form cos(arctanx) or sin(arctanx) ?  x__x

Much thanks!

It might help to draw triangles.

If you let arctanx = P, where P is the angle of a triangle, and since tan = O/A, you know that tanP = x/1 so the opposite side has length x, and the adjacent side has length 1. So the hypotenuse has length, sqrt(1+x^2). Which means that sin(arctanx) = sinP = O/H = x/sqrt(x^2+1).

Hope this helps!
2012-2015 - Doctor of Medicine (MD) @ UniMelb
2010-2011 - Bachelor of Science (BSc) majoring in Pure Mathematics @ UniMelb
2009 - VCE [99.70] -- Eng [43] - Methods [44] - Chem [44] - JapSL [45] - Spesh [45] - MUEP Jap [5.5]

vea

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1099
  • Respect: +29
  • School Grad Year: 2011
Re: Tricky question
« Reply #11 on: November 05, 2011, 11:03:01 pm »
0
Can someone tell me how to simplify something of the form cos(arctanx) or sin(arctanx) ?  x__x

Much thanks!

It might help to draw triangles.

If you let arctanx = P, where P is the angle of a triangle, and since tan = O/A, you know that tanP = x/1 so the opposite side has length x, and the adjacent side has length 1. So the hypotenuse has length, sqrt(1+x^2). Which means that sin(arctanx) = sinP = O/H = x/sqrt*x^2+1).

Hope this helps!

Thanks for that, I was wondering if there was an algebraic way though?
2011: ATAR 99.50
2012: Bachelor of Biomedicine, UoM
2015: Doctor of Dental Surgery, UoM

dc302

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1031
  • Respect: +53
  • School: Melbourne High School
  • School Grad Year: 2009
Re: Tricky question
« Reply #12 on: November 05, 2011, 11:05:09 pm »
+4
Can someone tell me how to simplify something of the form cos(arctanx) or sin(arctanx) ?  x__x

Much thanks!

It might help to draw triangles.

If you let arctanx = P, where P is the angle of a triangle, and since tan = O/A, you know that tanP = x/1 so the opposite side has length x, and the adjacent side has length 1. So the hypotenuse has length, sqrt(1+x^2). Which means that sin(arctanx) = sinP = O/H = x/sqrt*x^2+1).

Hope this helps!

Thanks for that, I was wondering if there was an algebraic way though?

Sure is.

artanx = P

so tanp = x, sinp/cosp = x

sinp = xcosp

sinp ^2 = x^2 cosp ^2

sinp ^2 = x^2 (1-sinp ^2)

rearrange to get sinp = x/ sqrt(1+x^2)


edit: keep in mind that when you take the sqrt, you have to be wary of the signs, which depend on which quadrant your triangle is in.
« Last Edit: November 05, 2011, 11:07:56 pm by dc302 »
2012-2015 - Doctor of Medicine (MD) @ UniMelb
2010-2011 - Bachelor of Science (BSc) majoring in Pure Mathematics @ UniMelb
2009 - VCE [99.70] -- Eng [43] - Methods [44] - Chem [44] - JapSL [45] - Spesh [45] - MUEP Jap [5.5]

vea

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1099
  • Respect: +29
  • School Grad Year: 2011
Re: Tricky question
« Reply #13 on: November 05, 2011, 11:09:18 pm »
0
Can someone tell me how to simplify something of the form cos(arctanx) or sin(arctanx) ?  x__x

Much thanks!

It might help to draw triangles.

If you let arctanx = P, where P is the angle of a triangle, and since tan = O/A, you know that tanP = x/1 so the opposite side has length x, and the adjacent side has length 1. So the hypotenuse has length, sqrt(1+x^2). Which means that sin(arctanx) = sinP = O/H = x/sqrt*x^2+1).

Hope this helps!

Thanks for that, I was wondering if there was an algebraic way though?

Sure is.

artanx = P

so tanp = x, sinp/cosp = x

sinp = xcosp

sinp ^2 = x^2 cosp ^2

sinp ^2 = x^2 (1-sinp ^2)

rearrange to get sinp = x/ sqrt(1+x^2)


edit: keep in mind that when you take the sqrt, you have to be wary of the signs, which depend on which quadrant your triangle is in.

nice!

thanks :)
2011: ATAR 99.50
2012: Bachelor of Biomedicine, UoM
2015: Doctor of Dental Surgery, UoM

funkyducky

  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1273
  • Respect: +64
  • School Grad Year: 2011
Re: Tricky question
« Reply #14 on: November 05, 2011, 11:24:08 pm »
0
There's more to this question, if you want:

is defined by
Find and such that is a subset of

and:

and has only one solution.
Find the possible values of 

Have fun :)

EDIT: I typed a mistake, was meant to be find (not )

EDIT 2: EEP another typo! Find b for the second part, not a lol.
« Last Edit: November 05, 2011, 11:48:24 pm by funkyducky »
I won the GAT: 49/50/50.
Tutoring! Maths Methods (50), Specialist Maths (43), Chemistry (45)