It is questions 2 I want solve it without using simultaneous twice but use substitution method if.its possible
ax+by=p......... equation 1
bx-ay=q.......... equation 2
bx-ay=q (using equation 2, rearrange for x)
bx=q+ay
x=(q+ay)/b
a(q+ay/b)+by=p (sub x value into equation 1)
(aq+a^2y)/b + by=p
aq+a^2y+b^2y=bp (multiplied previous equation by b)
y(a^2+b^2)+aq=bp(factorised by common factor y)
y(a^2+b^2)=bp-aq
y=(bp-aq)/(a^2+b^2) (solved for y)
bx-ay=q (using equation 2, rearrange for y)
-ay=-bx+q
ay=bx-q
y=(bx-q)/a
ax+b(bx-q/a)=p (sub y value into equation 1)
ax+(b^2x-bq)/a=p
a^2x+b^2x-bq=ap (multiplied previous equation by a)
x(a^2+b^2)-bq=ap (factorised by common factor x)
x=(ap+bq)/(a^2+b^2) (solved for x)