Ok here goes nothing........ (Also screw sig figs)
v(NaOH)+v(KOH)=200ml
v(NaOH)+v(KOH)=0.200 L ........[1]
c(NaOH)=3c(KOH) .....................[2]
c(KOH)=5v(KOH) .......................[3]
From [3]
=\frac{n(KOH)}{v(KOH)})
....... [3a]
Now the final amount of HCL will be
=0.154*\frac{976}{55*1000}=0.0027328 \: mol)
n(OH
-)final=n(HCl)=0.0027328
originally=0.0027328*\frac{100}{20}*\mathbf{\frac{200}{20}}=0.13664 \: mol)
HCl
(aq)+OH
-(aq)--->H
2O
(aq)+Cl
-(aq)So.......
n(KOH)+n(NaOH)=0.13664 mol .............[4]
as c=n*v
c(KOH)*v(KOH)+c(NaOH)*v(NaOH)=0.13664
5[v(KOH)]
2+3c(KOH)*(0.2-v(KOH))=0.13664 from [3], [2] and [1]
5[v(KOH)]
2+3(5v(KOH))*(0.2-v(KOH))=0.13664 from [3]
Expand
5[v(KOH)]
2+3v(KOH)-15[v(KOH))]
2=0.13664
10[v(KOH)]
2-3v(KOH)+0.13644=0
=\frac{3\pm\sqrt{3^{2}-4(10)(0.13644)}}{2(10)})
=0.055894 \: L \: or \: v(KOH)=0.244106 \: L)
BUT 0<v(KOH)<0.2 L
SOO
=0.055894 \: L)
v(NaOH)=0.200-0.05589
=0.1441106 L
=144.111 mL
=144 mL

There is a slim chance that I didn't make a mistake in there somewhere but lets hope its right (I doubt it will be though, but oh well)
EDIT: Plugging numbers back in and checking with the rules, it looks ok, so we'll see
EDIT2: Fixed to included the initial aliquot, which illuminati pointed out, thanks illuminati 