Login

Welcome, Guest. Please login or register.

November 08, 2025, 04:13:01 am

Author Topic: reasonable question, solveable  (Read 1380 times)  Share 

0 Members and 1 Guest are viewing this topic.

mozart

  • Victorian
  • Trendsetter
  • **
  • Posts: 129
  • laugh
  • Respect: 0
reasonable question, solveable
« on: January 12, 2008, 10:54:28 pm »
0
1) The speed of a current in a river is 5km/h. A boat traveled 10km upstream and 10km down stream for a total of 6 hours. ehat is the speed of hte boat in still water, to the nearest tenth of a km/h



2)Graph each function: Indicate the equation of any vertical and/ or horizontal asymptotes

a)3x/x-1

b)1/x^2-2x
2008- hoPing for
legal studies- 39+raw
2009-hoPing for
methods- 35+raw
Physics- 35+ raw
chemistry- 35+raw
english- 37+raw
viss comm & design- 44+raw

overal Enter minimum: over 83

cara.mel

  • Guest
Re: reasonable question, solveable
« Reply #1 on: January 13, 2008, 09:34:29 am »
0
1) Let the speed of the boat be v, time it takes to go upstream = t
Also, speed = distance / time

Going upstream:

Going downstream: (the 6-t is there because the two times add up to 6, so the second time is = 6h - first time)

And then you have your 2 simultaneous equations and can go from there, which unless someone else suggests something better, I'd say ask your calculator :), especially given the invitation of 'to the nearest tenth of a km/h)
=> v=6.9km/hr

2 - for both of these I am assuming they are 1 fraction. I also don't know how to make graphs on the computer but you can ask your calculator that 0=)

a)long divide it etc to get
From there you can see it is the hyperbola graph dilated 3 and translated 1 to the right and 3 upwards
=> asymptotes are y=3 and x=1

b)You'd draw x^2-2x and then reciprocate it
Vertical asymptotes are when x^2-2x = 0 => at x=0 and x=2
Also it has a horizontal asymptote y=0 as because as x^2-2x gets bigger and bigger either way, 1/x^2-2x approaches 0

Mao

  • CH41RMN
  • Honorary Moderator
  • Great Wonder of ATAR Notes
  • *******
  • Posts: 9181
  • Respect: +390
  • School: Kambrya College
  • School Grad Year: 2008
Re: reasonable question, solveable
« Reply #2 on: January 13, 2008, 02:15:07 pm »
0
2 b)
factorising gives us
hence the vertical asymptotes are x=0 and x=2
turning point is midway between x=0 and x=2, at point (1,-1)

since the graph is positive, from left to right:
y=0 @ x=
y approaches as x approaches 0 from negative
y= immediately to the right of x=0
maximum turning point at (1,-1), then y approaches as x approaches 2
y= immediately to the right of x=2
y approaches 0 as x approaches



:D
« Last Edit: January 13, 2008, 04:16:35 pm by Obsolete Chaos »
Editor for ATARNotes Chemistry study guides.

VCE 2008 | Monash BSc (Chem., Appl. Math.) 2009-2011 | UoM BScHon (Chem.) 2012 | UoM PhD (Chem.) 2013-2015