Login

Welcome, Guest. Please login or register.

November 01, 2025, 06:20:56 pm

Author Topic: Trig question(s)  (Read 1118 times)  Share 

0 Members and 1 Guest are viewing this topic.

abhi223

  • Adventurer
  • *
  • Posts: 17
  • Respect: 0
Trig question(s)
« on: April 09, 2018, 06:09:56 pm »
0
Hey guys, I am struggling with the question number 2.b)i) which is given that 0<x<(pi/4) and sin(x) + cos(x) = (4/3), 'use algebra' to show that
 cos(2x)=(4(2)^(1/2))/9. Thanks for helping!

mzhao

  • Trailblazer
  • *
  • Posts: 33
  • Respect: +5
Re: Trig question(s)
« Reply #1 on: April 09, 2018, 08:56:38 pm »
+2
Hey guys, I am struggling with the question number 2.b)i) which is given that 0<x<(pi/4) and sin(x) + cos(x) = (4/3), 'use algebra' to show that
 cos(2x)=(4(2)^(1/2))/9. Thanks for helping!

Hey abhi223,

\begin{align*}
\text{Square both sides to get:}\\
(\sin(x) + \cos(x))^2 &= \frac{16}{9}\\
\implies \sin^2(x) + \cos^2(x) + 2\sin(x)\cos(x) &= \frac{16}{9}\\
\implies 1 + 2\sin(x)\cos(x) &= \frac{16}{9} \text{ (by Pythagorean identity)}\\
\implies 2\sin(x)\cos(x) &= \frac{7}{9}\\
\implies \sin(2x) &= \frac{7}{9}\\
\end{align*}
\begin{align*}
\text{Using the Pythagorean identity again:}\\
\implies \cos(2x) &= +\sqrt{1-\sin^2(2x)} \text{ (positive because } 2x \text{ is in 1st quadrant)}\\
&= \sqrt{1-\frac{49}{81}}\\
&= \sqrt{\frac{32}{81}}\\
\therefore \cos(2x) &= \frac{4\sqrt{2}}{9} \text{, as required}\\
\end{align*}
2016: Algorithmics [48 + Premier's Award]
2017: Biology [46], Methods [50 + Premier's Award]
2018: Physics [50], Specialist [50 + Premier's Award]
2019: Chemistry [40], English [42], English Language [44], UMEP Mathematics [5.0]
ATAR: 99.95

abhi223

  • Adventurer
  • *
  • Posts: 17
  • Respect: 0
Re: Trig question(s)
« Reply #2 on: April 10, 2018, 07:23:23 am »
0
Thank you! :)