Login

Welcome, Guest. Please login or register.

November 08, 2025, 05:28:21 am

Author Topic: binomial theorem...  (Read 584 times)  Share 

0 Members and 1 Guest are viewing this topic.

Greatness

  • Victorian
  • ATAR Notes Legend
  • *******
  • Posts: 3100
  • Respect: +103
  • School Grad Year: 2011
binomial theorem...
« on: December 06, 2010, 12:42:37 pm »
0
In the example (2x+3)^4
after subbing the values into the equation thing, where does the (40) go when it is multiplied by (2x)^4?

stonecold

  • Victorian
  • Great Wonder of ATAR Notes
  • *******
  • Posts: 5335
  • Respect: +255
  • School Grad Year: 2010
Re: binomial theorem...
« Reply #1 on: December 06, 2010, 12:46:17 pm »
0
For smaller questions, you can just use pascals triangle.  :)

                         1
                       1   1
                     1   2   1
                   1   3   3   1
                 1   4   6   4   1
               1   5  10  10  5   1
2011-13: BBiomed (Microbiology & Immunology Major) @ UniMelb


VCE 2009'10: English 46 | English Language 49 | Chemistry 50 | Biology 50 | Further Mathematics 48 | Mathematical Methods CAS 39
ATAR: 99.85

"Failure is not when one falls down but rather when one fails to get up" - unknown

Greatness

  • Victorian
  • ATAR Notes Legend
  • *******
  • Posts: 3100
  • Respect: +103
  • School Grad Year: 2011
Re: binomial theorem...
« Reply #2 on: December 06, 2010, 01:09:45 pm »
0
how would you use that in relation to these questoins?? lol this is new to mme

dptjandra

  • Victorian
  • Trendsetter
  • **
  • Posts: 188
  • Respect: +2
Re: binomial theorem...
« Reply #3 on: December 06, 2010, 01:19:37 pm »
0
Method 1:
(4C0)*(2x)^4*(3)^0 + (4C1)*(2x)^3*(3)^1 + (4C2)*(2x)^2*(3)^2 + (4C3)*(2x)^1*(3)^3 + (4C4)*(2x)^0*(3)^4

Method 2:
Look at Pascal's triangle - (4C0) = 1 ; (4C1) = 4; (4C2) = 6; (4C3) = 4; (4C4) = 1
So it becomes:
1*(2x)^4*(3)^0 + 4*(2x)^3*(3)^1 + 6*(2x)^2*(3)^2 + 4*(2x)^1*(3)^3 + 1*(2x)^0*(3)^4

Similarly, if you had something to the power of 2, you would have:
(2C0) = 1; (2C1) = 2; (2C2) = 1
2008: Mathematical Methods (49)
2009: English (50), Specialist Mathematics (47), Chemistry (49), Physics (49), Latin (44)

Now offering summer tuition: http://vcenotes.com/forum/index.php/topic,34427.0.html

stonecold

  • Victorian
  • Great Wonder of ATAR Notes
  • *******
  • Posts: 5335
  • Respect: +255
  • School Grad Year: 2010
Re: binomial theorem...
« Reply #4 on: December 06, 2010, 01:29:12 pm »
0
Firsty expand.

So

(2x)430 +(2x)331 + (2x)232 + (2x)133 + (2x)034

= 16x4 +24x3 + 36x2 + 54x + 81

You have 5 terms, so go to the fifth line of pascals triangle, and place each of the coefficients in front of the terms.

Therefore,

1 x 16x4 + 4 x 24x3 + 6 x 36x2 + 4 x 54x + 1 x 81

= 16x4 + 96x3 + 216x2 + 216x + 81

Also, in Pascals Triangle, each number is just the sum of the two numbers above it.

For bigger questions you will need to use combinatorics though.
2011-13: BBiomed (Microbiology & Immunology Major) @ UniMelb


VCE 2009'10: English 46 | English Language 49 | Chemistry 50 | Biology 50 | Further Mathematics 48 | Mathematical Methods CAS 39
ATAR: 99.85

"Failure is not when one falls down but rather when one fails to get up" - unknown

Greatness

  • Victorian
  • ATAR Notes Legend
  • *******
  • Posts: 3100
  • Respect: +103
  • School Grad Year: 2011
Re: binomial theorem...
« Reply #5 on: December 06, 2010, 01:48:24 pm »
0
Ohh i get it now :) i didnt know that the first row of the triangle = 0.
If a quesiton asks you to use the binomial theorem, can you still use the pascal triangle method?

EDIT: Yay thanks again guys i jsut did a few quetsions and got them right :)
« Last Edit: December 06, 2010, 01:55:05 pm by swarley »