2019 NHT Methods Exam 1: AlphaZero's AnswersNot posting full working since I can't be bothered. I'll just provide answers and a few notes for the harder questions. If anyone has any questions, just ask. I did this exam really quickly, so I could've made a few errors. If I have, let me know.
Question 1a
\(\dfrac{dy}{dx}=2e^x+e^{-x}\)
Question 1b
\(f'\left(\dfrac\pi 3\right)=\dfrac{-2\pi}{3}\)
Question 2
\(\displaystyle f(x)=\frac23x^3-\frac34x^{1/3}-\frac53\)
Question 3a
\(\displaystyle \int_2^7 \frac{1}{x+\sqrt3}dx=\log_e(7+\sqrt3)-\log_e(2+\sqrt3)\quad \text{and}\quad \int_2^7 \frac{1}{x-\sqrt3}dx=\log_e(7-\sqrt3)-\log_e(2-\sqrt3)\)
Question 3b
Pretty easy proof. Write the left-hand side on a common denominator. The result follows.
Question 3c
\(\displaystyle \int_2^7 \frac{x}{x^2-3}dx=\frac12\log_e(46)\)
Question 4a
\(\text{domain}(g)=(3,\,\infty)\quad\text{and}\quad \text{range}(g)=\mathbb{R}\)
Question 4b.ii
Use a calculator to check your answer here. Vertical asymptote at \(x=3\). Graph of \(g\) crosses through \((4,\,2)\).
Question 5a
\(x=-1\quad\text{or}\quad x=3\)
Question 5b
\(\displaystyle h^{-1}(x)=\frac12(x+2)^2-\frac32,\quad \text{domain}(h^{-1})=[-2,\,\infty)\)
Question 6a
\(\Pr(\text{event})=\dfrac12\)
Question 6b
\(\text{90% CI}:\ \left(\dfrac{29}{60},\ \dfrac{17}{20}\right)\)
Question 7a
Evaluating \(\displaystyle \int_0^a \!\Big(\sin(\pi x)-\sin(a\pi)\Big)dx\) gives the required result.
Question 7b
\(A\) is strictly increasing from the diagram, so \(A(1)\leq A(a)\leq A\left(\dfrac32\right)\implies \dfrac2\pi\leq A(a)\leq \dfrac1\pi+\dfrac32\).
Question 7c.i
\(A_2=\displaystyle \int_0^{4/3}2\left(\sin(\pi x)+\dfrac{\sqrt{3}}{2}\right)dx=2\int_0^{4/3}\!\left(\sin(\pi x)-\sin\left(\dfrac{4\pi}{3}\right)\right)dx=2\,A\left(\dfrac43\right)\)
Question 7c.ii
\(A_2=\dfrac3\pi +\dfrac{4\sqrt{3}}{3}\)
Question 8a
\(W\sim\text{Bi}\left(50,\ \dfrac16\right)\implies\Pr(W=k)=\displaystyle \binom{50}{k}\left(\dfrac16\right)^k\left(\dfrac56\right)^{50-k}\)
Question 8b
\begin{align*}\frac{\Pr(W=k+1)}{\Pr(W=k)}&=\frac{\displaystyle\binom{50}{k+1}\left(\dfrac16\right)^{k+1}\left(\dfrac56\right)^{49-k}}{\displaystyle\binom{50}{k}\left(\dfrac16\right)^k\left(\dfrac56\right)^{50-k}} \\ &=\frac{50!}{(k+1)!(49-k)!}\times\frac{k!(50-k!)}{50!}\times \frac16\times \frac65\\ &=\frac{50-k}{5(k+1)}\end{align*} \(\text{Note}:\ \ \dfrac{(n+1)!}{n!}=n+1,\ \ \ n\in\mathbb{N}\)
Question 8c
Comparing the result in Q8b to \(1\), we have \[\frac{50-k}{5(k+1)}=1\implies k=7.5,\] and so we try \(k=7\) and \(k=8:\)\[\frac{\Pr(W=8)}{\Pr(W=7)}=\frac{43}{40}\geq 1\implies \Pr(W=7)<\Pr(W=8)\\ \frac{\Pr(W=9)}{\Pr(W=8)}=\frac{42}{45}\leq 1\implies \Pr(W=8)>\Pr(W=9)\] Thus, \(\Pr(W=k)\) is maximum for \(k=8\).
Note: the above method works because for \(X\sim\text{Bi}(n,\,p)\), where \(0<p<1\), \(\Pr(X=k)\) is strictly increasing for \(k\leq \inf\{\text{mode}(X)\}\) and is strictly decreasing for \(k\geq \sup\{\text{mode}(X)\}\).
Alternatively, since \(0<p\,(=1/6)<1\) and we're told that \(\text{mode}(W)\) is unique, we have \[\text{mode}(W)=\left\lfloor (n+1)p\right\rfloor=\left\lfloor \frac{51}{6}\right\rfloor =8\]