Login

Welcome, Guest. Please login or register.

August 13, 2025, 12:16:21 pm

Author Topic: VCE Specialist 3/4 Question Thread!  (Read 2569342 times)  Share 

0 Members and 3 Guests are viewing this topic.

ashoni

  • Victorian
  • Trendsetter
  • **
  • Posts: 132
  • Respect: 0
  • School Grad Year: 2013
Re: Specialist 3/4 Question Thread!
« Reply #1575 on: April 10, 2013, 09:07:45 pm »
0
(Try attempting the problem with the help before looking in the spoilers)

11. Combine each component.

Then for the vector to be parallel to the axis, the and components must be zero. So you can equate these two components to zero, get two equations with two unknowns, and solve for and .
Spoiler


17. Draw out the triangle to help you see the situation, then put the arrows for the vectors in the right direction, i.e. for vector AB, the arrow from A to B. Since is parallel to , .
Then


Now for the angle B to be a right angle, the dot product of the two vectors that meet at B must be zero, that is the dot product of and is zero.

Spoiler


But


Hope that helps :)

EDIT: Fixed the mistake as pointed out by 507

ahhh makes so much sense! thank you for taking your time to work it out for me b^3! :D

zvezda

  • Victorian
  • Forum Leader
  • ****
  • Posts: 520
  • Respect: +1
Re: Specialist 3/4 Question Thread!
« Reply #1576 on: April 10, 2013, 09:14:01 pm »
0
Because you have a relation, and are given a value of , there are only two values of (in this case) that will correspond to that . So you have to take the positive one.

What you're doing is you're finding a for any value of , but evaluating the derivative with . You won't have all those values of the derivative on that curve, just those that have the value that corresponds to .

Ok fair enough, thanks for that b3
ATAR: 99.80

ashoni

  • Victorian
  • Trendsetter
  • **
  • Posts: 132
  • Respect: 0
  • School Grad Year: 2013
Re: Specialist 3/4 Question Thread!
« Reply #1577 on: April 10, 2013, 09:38:04 pm »
0
need help with question... see attachment

brightsky

  • Victorian
  • ATAR Notes Legend
  • *******
  • Posts: 3136
  • Respect: +200
Re: Specialist 3/4 Question Thread!
« Reply #1578 on: April 10, 2013, 11:27:59 pm »
0
5. a) BL = 2/3 BC = 2/3 (c-b), so OL = OB + BL = b + 2/3 (c-b) = 1/3 b + 2/3 c
b) a = OA = -OL = -1/3 b - 2/3 c
so LHS = 3a + b + 2c = 3(-1/3 b - 2/3 c) + b + 2c = -b - 2c + b + 2c = 0 = RHS, as req
c) i) BO = - OB = -b
BM = BC + CM = c-b + 3/5 CA = c-b + 3/5 (a-c) = c-b + 3/5a - 3/5 c = 2/5 c - b + 3/5 (-1/3b-2/3c) = 2/5c - b - 1/5 b -2/5c = -6/5 b
so BM = 6/5 BO so B, O, M are collinear
ii) BO: OM = 1:1/5 = 5:1
d) AB = b-a = b-(-1/3b - 2/3c) = 4/3b + 2/3c
AN = k(4/3b + 2/3c) = 4/3 k b + 2/3 k c
ON = OA + AN = a + 4/3k b + 2/3 k c = (-1/3b - 2/3c) + 4/3k b + 2/3 k c = (4/3 k -1/3) b + (2/3 k - 2/3) c
we want ON to be parallel to OC. so 4/3 k - 1/3 = 0, k = 1/4
so AN = 1/3 b + 1/6 c = 1/4 AB
so AN:NB = 1:3

hopefully no errors
2020 - 2021: Master of Public Health, The University of Sydney
2017 - 2020: Doctor of Medicine, The University of Melbourne
2014 - 2016: Bachelor of Biomedicine, The University of Melbourne
2013 ATAR: 99.95

Currently selling copies of the VCE Chinese Exam Revision Book and UMEP Maths Exam Revision Book, and accepting students for Maths Methods and Specialist Maths Tutoring in 2020!

tote.moore

  • Victorian
  • Adventurer
  • *
  • Posts: 18
  • Respect: 0
  • School: St. Joseph's College
Re: Specialist 3/4 Question Thread!
« Reply #1579 on: April 11, 2013, 09:47:45 pm »
0
I'am wondering how to derive inverse trig functions such as cos^-1((3x)/2)).. The textbook give the basic formula for working with easy ones such as cos^-1(x/2), also any tips on graphing the derivatives of inverse trig functions.
2012: Business Managment [44]

2013 Goals(RAW):
Methods 36+
Spec 32+
Physics 35+
English 36+
Further 45+

1st. Pref: Bachelor of Engineering (Civil and Infrastructure)/Bachelor of Business (Management) - 93.20 atar

ashoni

  • Victorian
  • Trendsetter
  • **
  • Posts: 132
  • Respect: 0
  • School Grad Year: 2013
Re: Specialist 3/4 Question Thread!
« Reply #1580 on: April 11, 2013, 09:54:12 pm »
0
brightsky, could you explain how you got to

a = OA = -OL = -1/3 b - 2/3 c  from 5b.

I found the wording in the question quite confusing :(


Hancock

  • SUPER ENGINEERING MAN
  • Victorian
  • Part of the furniture
  • *****
  • Posts: 1221
  • Respect: +270
  • School: Ringwood Secondary College
  • School Grad Year: 2011
Re: Specialist 3/4 Question Thread!
« Reply #1581 on: April 11, 2013, 10:35:53 pm »
0
5. a) BL = 2/3 BC = 2/3 (c-b), so OL = OB + BL = b + 2/3 (c-b) = 1/3 b + 2/3 c
b) a = OA = -OL = -1/3 b - 2/3 c
so LHS = 3a + b + 2c = 3(-1/3 b - 2/3 c) + b + 2c = -b - 2c + b + 2c = 0 = RHS, as req
c) i) BO = - OB = -b
BM = BC + CM = c-b + 3/5 CA = c-b + 3/5 (a-c) = c-b + 3/5a - 3/5 c = 2/5 c - b + 3/5 (-1/3b-2/3c) = 2/5c - b - 1/5 b -2/5c = -6/5 b
so BM = 6/5 BO so B, O, M are collinear
ii) BO: OM = 1:1/5 = 5:1
d) AB = b-a = b-(-1/3b - 2/3c) = 4/3b + 2/3c
AN = k(4/3b + 2/3c) = 4/3 k b + 2/3 k c
ON = OA + AN = a + 4/3k b + 2/3 k c = (-1/3b - 2/3c) + 4/3k b + 2/3 k c = (4/3 k -1/3) b + (2/3 k - 2/3) c
we want ON to be parallel to OC. so 4/3 k - 1/3 = 0, k = 1/4
so AN = 1/3 b + 1/6 c = 1/4 AB
so AN:NB = 1:3

hopefully no errors

Learn LaTex Bro. (good job though)
Thinking of doing Engineering? - Engineering FAQs

2012 - 2014: B.Sc. - Mechanical Systems - The University of Melbourne
2014 - 2014: Cross-Institutional Study - Aero/Mech Engineering - Monash University
2015 - 2016: M.Eng (Mechanical with Business) - The University of Melbourne
2015 - Sem1: Exchange Semester - ETH Zurich

polar

  • Guest
Re: Specialist 3/4 Question Thread!
« Reply #1582 on: April 11, 2013, 10:45:48 pm »
+1
I'am wondering how to derive inverse trig functions such as cos^-1((3x)/2)).. The textbook give the basic formula for working with easy ones such as cos^-1(x/2), also any tips on graphing the derivatives of inverse trig functions.

use the chain rule

tote.moore

  • Victorian
  • Adventurer
  • *
  • Posts: 18
  • Respect: 0
  • School: St. Joseph's College
Re: Specialist 3/4 Question Thread!
« Reply #1583 on: April 13, 2013, 04:04:10 pm »
0
Thanks polar! i can now do it
2012: Business Managment [44]

2013 Goals(RAW):
Methods 36+
Spec 32+
Physics 35+
English 36+
Further 45+

1st. Pref: Bachelor of Engineering (Civil and Infrastructure)/Bachelor of Business (Management) - 93.20 atar

Homer

  • Victorian
  • Forum Obsessive
  • ***
  • Posts: 431
  • Respect: +10
Re: Specialist 3/4 Question Thread!
« Reply #1584 on: April 14, 2013, 11:53:09 am »
+1
it is know that and are both roots of the equation



where b, c, d, e are all integers. Find b, c, d, and e.

I dunno how to get the fourth root :/

Bachelor of Laws/Engineering

2013 ATAR: 98.65

Specialist Maths [53.06] Maths Methods [48.83] Physics [48.22]

Donuts. Is there anything they can't do?

deleted

  • .
  • Forum Regular
  • *
  • Posts: 99
  • Respect: -25
Re: Specialist 3/4 Question Thread!
« Reply #1585 on: April 14, 2013, 12:46:12 pm »
0
Can't you just use 1-√2 and 1-√2i as the other roots?

And when you expand (z-1+√2)(z-1-√2)(z-1-√2i)(z-1+√2i) you get

z^4-4z^3+6z^2-4z-3

Therefore
b=-4 c=6 d=-4 e=-3

Homer

  • Victorian
  • Forum Obsessive
  • ***
  • Posts: 431
  • Respect: +10
Re: Specialist 3/4 Question Thread!
« Reply #1586 on: April 14, 2013, 01:06:03 pm »
+1
I did use 1-√2i but i dont think 1-√2 is right, since you cant really get the conjugate of 1+√2, its just a number (1+√2 +0i)

but i might be wrong :) thanks anyways
Bachelor of Laws/Engineering

2013 ATAR: 98.65

Specialist Maths [53.06] Maths Methods [48.83] Physics [48.22]

Donuts. Is there anything they can't do?

nubs

  • Victorian
  • Forum Leader
  • ****
  • Posts: 688
  • Respect: +97
Re: Specialist 3/4 Question Thread!
« Reply #1587 on: April 14, 2013, 01:26:26 pm »
+1
Kevin is right, you can use 1-√2

The conjugate of an irrational root is also a solution

The irrational conjugate roots theorem says:

Let p(x) be any polynomial with rational coefficients. If
a + b*sqrt(c) is a root of p(x), where sqrt(c) is irrational and
a and b are rational, then another root is a - b*sqrt(c).

There are a number of complications on top of that though which I won't get into, which is why I'd be pretty surprised if it were to appear on an exam. I do remember it being on an A+ study guide or something though
« Last Edit: November 19, 2018, 12:40:22 am by spectroscopy »
ATAR: 99.15

BSc @ UoM
2012-2014

ex oh ex oh

Homer

  • Victorian
  • Forum Obsessive
  • ***
  • Posts: 431
  • Respect: +10
Re: Specialist 3/4 Question Thread!
« Reply #1588 on: April 14, 2013, 01:35:47 pm »
0
oh wow! never knew dat! thanks guys :)
Bachelor of Laws/Engineering

2013 ATAR: 98.65

Specialist Maths [53.06] Maths Methods [48.83] Physics [48.22]

Donuts. Is there anything they can't do?

Homer

  • Victorian
  • Forum Obsessive
  • ***
  • Posts: 431
  • Respect: +10
Re: Specialist 3/4 Question Thread!
« Reply #1589 on: April 20, 2013, 12:02:06 pm »
+1
 how do you guys approach questions related to vectors in geometry. Im finding it really difficult :(
Bachelor of Laws/Engineering

2013 ATAR: 98.65

Specialist Maths [53.06] Maths Methods [48.83] Physics [48.22]

Donuts. Is there anything they can't do?