Login

Welcome, Guest. Please login or register.

November 01, 2025, 03:17:20 pm

Author Topic: Circular functions question help?  (Read 877 times)  Share 

0 Members and 2 Guests are viewing this topic.

Yoda

  • Victorian
  • Forum Regular
  • **
  • Posts: 50
  • Respect: 0
Circular functions question help?
« on: February 16, 2014, 04:40:10 pm »
0
Need help with the following questions thanks

a) Use a compound angle formula to show that tan^-1(3) - tan^-1(1/2) = pi/4

b) Hence show that tan^-1(x) - tan^-1(x-1/x+1) = pi/4 , x>-1.
Specialist   Methods   English   Physics   Psychology   Googed.

RKTR

  • Victorian
  • Forum Leader
  • ****
  • Posts: 613
  • Respect: +17
Re: Circular functions question help?
« Reply #1 on: February 16, 2014, 05:34:32 pm »
+1
a) let tan^-1(3)=x, tan^-1(1/2)=y
          tan(x)=3, tan(y)=1/2

LHS:  tan^-1(tan[tan^-1(3)-tan^-1(1/2)]
        = tan^-1 [tan(x-y)]
         =tan^-1 [ tanx -tany /(1+tanx tany)
         =tan^-1 ( 3-1/2 )/(1+ 3(1/2)
         =tan^-1 [(5/2) / (5/2)]
         =tan^-1(1)
         =pi/4
         =RHS (Shown)
 
b) let tan^-1(x)=a ,tan(a)=x
         tan^-1(x-1/x+1)=b,tan(b)=x-1/x+1

LHS: tan^-1(x)-tan^-1(x-1/x+1)
       =tan^-1(tan[tan^-1(x)-tan^-1(x-1/x+1)
       =tan^-1(tan(a-b)
        =tan^-1[(tan a -tanb)/(1+tana tan b)]
        =tan^-1[x -( x-1)/(x+1)]/[1+ (x)(x-1)/(x+1)]
        =tan^-1{[(x^2+x-x+1)/(x+1)]/ [(x+1+x^2-x)/(x+1)]
        =tan^-1 (x^2+1)/(x^2+1)
        =tan^-1(1)
        =pi/4
        =RHS (Shown) 
 
2015-2017: Bachelor of Biomedicine (Neuroscience)
2018: Doctor of Medicine (Withdrawn)
2019: Bachelor of Commerce (Actuarial Studies?)