Login

Welcome, Guest. Please login or register.

September 28, 2025, 04:28:40 pm

Author Topic: Unit 2, question about derivatives  (Read 1151 times)  Share 

0 Members and 1 Guest are viewing this topic.

lolaishappy

  • Victorian
  • Forum Regular
  • **
  • Posts: 83
  • Art | English | Math Methods | Physics | Furthers
  • Respect: 0
  • School: BBC
  • School Grad Year: 2015
Unit 2, question about derivatives
« on: September 16, 2014, 06:20:39 pm »
0
Im new here, and I always need help  :'( ::)
so this is the question..

The function y=x^3(a/3) - x^2(b/2) + 6x + c  has turning points at x=1 and x=-1.
A) find the derivative..
which is    ax^2 -bx + 6

B) Find the values of a and b. Im stuck at this question  :-[
Newb coming through

theshunpo

  • Victorian
  • Trendsetter
  • **
  • Posts: 113
  • Respect: +1
  • School Grad Year: 2014
Re: Unit 2, question about derivatives
« Reply #1 on: September 16, 2014, 06:36:47 pm »
0
At the turning points (x=1 and x=-1) (the derivative) is equal to 0.

Using x=1 and x=-1, you can create two simultaneous equations which equal to 0, which will allow you to solve for a and b.
These simultaneous equations are:
Spoiler
a-b+6=0 and a+b+6=0
2013: Revolutions
2014: English | Economics | Physics | Mathematical Methods | Specialist Mathematics
ATAR: 97.20
2015-2017: Bachelor of Commerce @ UoM

lolaishappy

  • Victorian
  • Forum Regular
  • **
  • Posts: 83
  • Art | English | Math Methods | Physics | Furthers
  • Respect: 0
  • School: BBC
  • School Grad Year: 2015
Re: Unit 2, question about derivatives
« Reply #2 on: September 16, 2014, 06:50:49 pm »
0
At the turning points (x=1 and x=-1) (the derivative) is equal to 0.

Using x=1 and x=-1, you can create two simultaneous equations which equal to 0, which will allow you to solve for a and b.
These simultaneous equations are:
Spoiler
a-b+6=0 and a+b+6=0
Thanks so much, much simpler than the teacher's way. 8)
Newb coming through