Login

Welcome, Guest. Please login or register.

July 18, 2025, 02:14:09 pm

Author Topic: Count to 20 before a mod posts!  (Read 1922991 times)  Share 

0 Members and 5 Guests are viewing this topic.

S200

  • Part of the furniture
  • *****
  • Posts: 1108
  • Yeah well that happened...
Re: Count to 20 before a mod posts!
« Reply #3375 on: June 11, 2018, 09:51:02 am »

1
Carpe Vinum

\(\LaTeX\) - \(e^{\pi i }\)
#ThanksRui! - #Rui\(^2\) - #Jamon10000

5233718311 :D

PhoenixxFire

  • VIC MVP - 2018
  • Honorary Moderator
  • ATAR Notes Legend
  • *******
  • Posts: 3695
  • They/them/theirs
Re: Count to 20 before a mod posts!
« Reply #3376 on: June 11, 2018, 10:09:13 am »
2
2019: B. Environment and Sustainability/B. Science @ ANU
2020: Just Vibing
2021: B. Paramedicine/B. Nursing @ ACU Canberra

RuiAce

  • ATAR Notes Lecturer
  • Honorary Moderator
  • Great Wonder of ATAR Notes
  • *******
  • Posts: 8814
  • "All models are wrong, but some are useful."
Re: Count to 20 before a mod posts!
« Reply #3377 on: June 11, 2018, 10:14:05 am »
\[ \int_1^2 \frac{dx}{x} + \sum_{k=1}^\infty \frac{(-1)^k}k \]

S200

  • Part of the furniture
  • *****
  • Posts: 1108
  • Yeah well that happened...
Re: Count to 20 before a mod posts!
« Reply #3378 on: June 11, 2018, 10:48:13 am »
1
Carpe Vinum

\(\LaTeX\) - \(e^{\pi i }\)
#ThanksRui! - #Rui\(^2\) - #Jamon10000

5233718311 :D

Bri MT

  • VIC MVP - 2018
  • Administrator
  • ATAR Notes Legend
  • *****
  • Posts: 4719
  • invest in wellbeing so it can invest in you
Re: Count to 20 before a mod posts!
« Reply #3379 on: June 11, 2018, 02:01:52 pm »
@Rui

You think your math is advanced? Try this:


1-1


lm21074

  • MOTM: JAN 19
  • Victorian Moderator
  • Forum Leader
  • *****
  • Posts: 589
Re: Count to 20 before a mod posts!
« Reply #3380 on: June 11, 2018, 03:21:55 pm »
2021: VCE
2022: Science / Arts @ Monash

BrittyG

  • Forum Regular
  • **
  • Posts: 97
  • Work hard and be rewarded
Re: Count to 20 before a mod posts!
« Reply #3381 on: June 11, 2018, 04:15:55 pm »
2
HSC 2018
Biology || Business Studies || English Standard || Genral Math || PDHPE || Studies of Religion I

PhoenixxFire

  • VIC MVP - 2018
  • Honorary Moderator
  • ATAR Notes Legend
  • *******
  • Posts: 3695
  • They/them/theirs
Re: Count to 20 before a mod posts!
« Reply #3382 on: June 11, 2018, 04:17:10 pm »
3
2019: B. Environment and Sustainability/B. Science @ ANU
2020: Just Vibing
2021: B. Paramedicine/B. Nursing @ ACU Canberra

HolHen

  • Adventurer
  • *
  • Posts: 6
  • Shine on <3
Re: Count to 20 before a mod posts!
« Reply #3383 on: June 11, 2018, 04:19:51 pm »
4
2018:
Texts and Traditions [42]
2019:
Methods [44]   Spec [50]  Physics [42]   Japanese SL [43]   English [40]

lm21074

  • MOTM: JAN 19
  • Victorian Moderator
  • Forum Leader
  • *****
  • Posts: 589
Re: Count to 20 before a mod posts!
« Reply #3384 on: June 11, 2018, 04:53:55 pm »
5
2021: VCE
2022: Science / Arts @ Monash

Bri MT

  • VIC MVP - 2018
  • Administrator
  • ATAR Notes Legend
  • *****
  • Posts: 4719
  • invest in wellbeing so it can invest in you
Re: Count to 20 before a mod posts!
« Reply #3385 on: June 11, 2018, 05:16:03 pm »
0

lucimatics

  • Adventurer
  • *
  • Posts: 5
Re: Count to 20 before a mod posts!
« Reply #3386 on: June 11, 2018, 06:18:21 pm »
1

S200

  • Part of the furniture
  • *****
  • Posts: 1108
  • Yeah well that happened...
Re: Count to 20 before a mod posts!
« Reply #3387 on: June 11, 2018, 06:19:35 pm »
1
Quote from: Phoenix or Poet, I have actually forgotten...
Welcome to the most pointless thread on AN...
2
« Last Edit: June 11, 2018, 06:28:17 pm by S200 »
Carpe Vinum

\(\LaTeX\) - \(e^{\pi i }\)
#ThanksRui! - #Rui\(^2\) - #Jamon10000

5233718311 :D

RuiAce

  • ATAR Notes Lecturer
  • Honorary Moderator
  • Great Wonder of ATAR Notes
  • *******
  • Posts: 8814
  • "All models are wrong, but some are useful."
Re: Count to 20 before a mod posts!
« Reply #3388 on: June 11, 2018, 06:55:56 pm »
@Rui

You think your math is advanced? Try this:


1-1


\begin{align*}&\quad 1 - 1\\ &= \frac{2}{2} - \frac{3}{3}\\ &= \frac{2 \times 3 - 3 \times 2}{6}\\ &= \frac{1}{6}(\sqrt4 \times \sqrt9 - \lfloor \pi \rfloor \lceil e \rceil)\\ &= \frac16 \left( \sqrt{ \lim_{(x,y) \to (1,1)} \frac{(x+1)^2 + (y+1)^2}{x^2+y^2} } \times \sqrt{-1 + \sum_{n=1}^4 n} - \left \lfloor 4\sum_{k=0}^\infty \frac{(-1)^k}{2k+1} \right \rfloor\left \lceil \lim_{\theta \to 0}(1 + \theta)^{1/\theta} \right \rceil\right)\\ &= \frac{1}{\int_0^\infty x^3 e^{-x}\,dx}\left( \sqrt{\lim_{(x,y)\to (1,1)}\frac{(x+1+iy+i)(x+1-iy-i)}{\left(nx,my)\cdot (n^{-1}x,m^{-1}y\right)}} \sqrt{e^{2001i\pi} + \sum_{n=1}^N \frac{n^2}{n} - \sum_{n=5}^N \sqrt[3]{n^3}} - \left \lfloor 16777216^{1/144^{1/2}} \sum_{k=0}^\infty \int_0^1 \int_{2k+1}^\infty \frac{2v}{u^2} \,du\,dv\right \rfloor \left \lceil \lim_{\epsilon \to 0} \frac{1-\cos x}{x^2} \lim_{\theta \to 0} \lim_{\phi \to 2\theta} \lim_{\rho \to \frac\pi2}2^{2\rho/\pi} \theta^{-1/\phi} \left( \sqrt{\frac\phi2} + \sqrt{\frac2\phi}\right) \sin \rho \right \rceil \right)\\ &= 0\end{align*}

S200

  • Part of the furniture
  • *****
  • Posts: 1108
  • Yeah well that happened...
Re: Count to 20 before a mod posts!
« Reply #3389 on: June 11, 2018, 07:16:45 pm »
I think that defines a methodical kill-joy.. :'(

1

Carpe Vinum

\(\LaTeX\) - \(e^{\pi i }\)
#ThanksRui! - #Rui\(^2\) - #Jamon10000

5233718311 :D