Hi.
I was wondering if someone could please help me with questions d,e,f?
I tried to factorise for x and y but I keep getting weird answers.
Thanks.
\[
\text{d.}\\
\text{Multiply the first equation by a and the second equation by b}\\
a^2x+aby=a^3+2a^2b=ab^2...\boxed{1}\\
b^2x+1by=a^2b+b^3...\boxed{2}\\
\boxed{1}-\boxed{2}:\\
x(a^2-b^2)=a^3+a^2b-ab^2-b^3\\
\begin{aligned}
x&=\frac{a^3+a^2b-ab^2-b^3}{a^2-b^2}\\
&=\frac{a^2(a+b)-b^2(a+b)}{a^2-b^2}\\
&=\frac{(a^2-b^2)(a+b)}{a^2-b^2}\\
&=a+b\\
\end{aligned}\\
\text{Then sub it back into }\boxed{2}\text{ and solve for y}\\
y=a-b\\
\text{ }\\
\text{ }\\
\text{e. Rewrite the second equation, then multiply the first equation by }b+c\text{ and the second equation by }c\\
(a+b)(b+c)x+c(c+c)y=bc(b+c)...\boxed{1}\\
acx+x(b+c)y=-abc...\boxed{2}\\
\boxed{1}-\boxed{2}:\\
\begin{aligned}
x((a+b)(b+c)-ac)&=bc(b+c)+abc\\
x(ab+ac+b^2+bc-ac)&=bc(b+c+a)\\
x(ab+b^2+bc)&=bc(a+b+c)\\
xb(a+b+c)&=bc(a+b+c)\\
x&=c\\
\end{aligned}\\
\text{Sub that into }\boxed{1}\text{ and solve for y}\\
y=-a\\
\text{ }\\
\text{ }\\
\text{f. First simplify the equations}\\
\begin{aligned}
3x-3a-2y-2a&=5-4a\\
3x-2y&=5-4a+3a+2a\\
3x-2y&=a+5...\boxed{1}\\
2x+2a+3y-3a&=4a-1\\
2x+3y&=4a-1-2a+3a\\
2x+3y&=5a-1...\boxed{2}\\
\end{aligned}\\
\text{Multiply }\boxed{1}\text{ by 3 and }\boxed{2}\text{ by 2}\\
\begin{aligned}
9x-6y&=3a+15...\boxed{3}\\
4x+6y&=10a-2...\boxed{4}\\
\end{aligned}\\
\boxed{3}+\boxed{4}:\\
\begin{aligned}
13x&=13a+13\\
x&=a+1\\
\end{aligned}\\
\text{Sub into }\boxed{2}\\
y=a-1\\
\]