b) Excuse the formatting, but:
z^3 - 3i z^2 - 3z + (4+i)
----------------------------------------------------------
z - 1 | z^4 - (1+3i)z^3 + 3(i-1)z^2 + (7+i)z - 4 - i
z^4 - z^3
----------------------
- 3i z^3 + 3(i-1)z^2
- 3i z^3 + 3i z^2
-----------------------------
-3z^2 + (7+i)z
-3z^2 + 3z
----------------------
(4+i)z - 4 - i
(4+i)z - 4 - i
-----------------
0
Hence, Q(z) = z^3 - 3i z^2 - 3z + (4+i).
c) By inspection, Q(z) = (z - i)^3 + 4. Completing the cubic is, in general, quite difficult, as is evident from the complexity of cubic formula:
http://www.math.vanderbilt.edu/~schectex/courses/cubic/. But in this case, we can see that z^3 - 3iz^2 - 3z looks somewhat like the expansion of (z-i)^3. All we need to do adjust (z-i)^3 by adding 4 to obtain Q(z).