I'll just show you how I did it, it might help.
Since the side of the 45-degree triangle is 1, then the bottom length is 1, and a = root2 (Pythagoras)
Since the top angle is 30 degrees, the bottom angle (45 + z) is 60 degrees. Therefore, z is 15 degrees.
If we let the vertical length = v, then we can solve for v using tangent.
tan(60) = O/A = v/1
root3 = v/1
v = root3
The hypotenuse of the triangle at the top is therefore root3 - 1
Using cosine to obtain w:
cos(30) = A/H = w/root3 - 1
root3/2 = w/root3 - 1
w = (3 - root3)/2
And sine to obtain y:
sin(30) = O/H = y/root3 - 1
1/2 = y/root3 - 1
y = (root3 - 1)/2
Using Pythagoras, we can find x + w
(root3)^2 + 1^2 = (x + w)^2
x + w = 2
x = 2 - (3 - root3)/2 = (1 + root3)/2
For part b:
sin(15) = O/H = y/a = [(root3 - 1)/2]/root2
sin(15) = (root3 - 1)/2 x root2/2
sin(15) = (root6 - root2)/4
cos(15) = A/H = x/a = [(1 + root3)/2]/root2
cos(15) = (1 + root3)/2 x root2/2
cos(15) = (root2 + root6)/4
tan(15) = sin(15)/cos(15) = [(root6 - root2)/4]/[(root2 + root6)/4]
tan(15) = (root6 - root2)/(root2 + root6) x (root2 - root6)/(root2 - root6) <---- rationalise the denominator
tan(15) = (2root3 - 6 - 2 + 2root3)/2 - 2root3 + 2root3 - 6
tan(15) = (4root3 -

/-4 = 2 - root3
Part c:
Since 15 and 75 are complementary angles
sin(75) = cos(15) = (root2 + root6)/4
cos(75) = sin(15) = (root6 - root2)/4
tan(75) = cot(15) = 1/(2 - root3)
Rationalise the denominator to tan(75) = 2 + root3