Good advice.
My questions are attached and circled. My calculator gave weird answers that got me nowhere.
For question 1c., my calculator gave:
.
Please help by answering the questions and briefly tell me how to do it on the calculator correctly, if I was doing it wrong.
(Solving gave the same answer.)
Thanks in advance.
Doesn't look like you have done anything wrong, you are just not all the way there.
The median, m, is a number such that
 = \frac{1}{2})
In this case we have that
 &= \int_{-\infty}^m f(x)\,\mbox{d}x \\ &= \int_1^m \ln x \,\mbox{d}x \\ &= [x\ln x - x]_1^m \\ &= m\ln m - m + 1<br />\end{alignedat})
Now set P(X<m) = 1/2 and you get the equation that your calculator gave you.
There is no solution in terms of elementary functions, so you need to get your calculator to solve that equation for m and you get an approximate numerical answer. I get

. There are two solutions for m, make sure to pick the one that is greater than 1.
d) is the same thing, just set P(x<m) = 0.95 instead.